

Ilse Ipsen Department of Mathematics

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The Economist, 27 February 2010

Science, 11 February 2011

McKinsey Global Institute, May 2011

McKinsey Global Institute

May 2011

Big data: The next frontier for innovation, competition, and productivity

Big data—a growing torrent

\$600 to buy a disk drive that can store all of the world's music

5 billion mobile phones in use in 2010

30 billion pieces of content shared on Facebook every month

40% projected growth in global data generated per year vs. 5% growth in a IT spendin

235 terabytes data collected by the US Library of Congress in April 2011

> 15 out of 17 sectors in the United States have more data stored per company than the US Library of Congress

> > ▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Big data—a growing torrent

\$600 to buy a disk drive that can store all of the world's music

5 billion mobile phones in use in 2010

30 billion pieces of content shared on Facebook every month

40% projected growth in global data generated per year vs. 5%

35 terabytes data collected by the US Library of Congress in April 2011

> 15 out of 17 sectors in the United States hav more data stored per company

nan the US Library of Congres

What is "Big"?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\bullet~1$ byte $\sim~1$ character
- $\bullet~10$ bytes $\sim 1~word$
- $\bullet~100$ bytes $\sim~1$ sentence
- 1 kilobyte = 1,000 bytes \sim 1 page

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1 byte \sim 1 character
- $\bullet~10$ bytes $\sim 1~word$
- ullet 100 bytes \sim 1 sentence
- 1 kilobyte = 1,000 bytes \sim 1 page
- 1 megabyte = 1,000 kilobytes \sim complete works of Shakespeare
- 1 gigabyte = 1,000 megabytes \sim a big shelf full of books

- 1 byte \sim 1 character
- $\bullet~10$ bytes $\sim~1$ word
- ullet 100 bytes \sim 1 sentence
- 1 kilobyte = 1,000 bytes \sim 1 page
- 1 megabyte = 1,000 kilobytes \sim complete works of Shakespeare
- 1 gigabyte = 1,000 megabytes \sim a big shelf full of books
- 1 terabyte = 1,000 gigabytes $$\sim$$ all books in the Library of Congress

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1 byte \sim 1 character
- $\bullet~10$ bytes $\sim~1$ word
- ullet 100 bytes \sim 1 sentence
- 1 kilobyte = 1,000 bytes \sim 1 page
- 1 megabyte = 1,000 kilobytes \sim complete works of Shakespeare
- 1 gigabyte = 1,000 megabytes \sim a big shelf full of books
- 1 terabyte = 1,000 gigabytes $$\sim$$ all books in the Library of Congress
- 1 petabyte = 1,000 terabytes

 \sim 20 million 4-door filing cabinets full of text

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

1 byte \sim 1 grain of sand

1 byte \sim 1 grain of sand

1 terabyte \sim number of grains to fill a swimming pool

・ロト ・ 理 ・ ・ ヨ ・ ・

э

Data

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Not quite

The Data in this Talk

Given:

Database: Collection of "documents" (data points) Query: Single "document" (data point)

Want:

Documents closest to query

A "Tiny Data" Example

Database: Emails from known authors

Email 1: shipment of gold damaged in a fire Email 2: delivery of silver arrived in a silver truck Email 3: shipment of gold arrived in a truck

Query: Email from unknown author gold silver truck

Which emails match the query best? These emails may give clues about the author of query

Simplest approach for matching: Word frequency

Tabulating Emails and Query

Database (term document matrix) + Query

Terms	Email 1	Email 2	Email 3	Query
а	1	1	1	0
arrived	0	1	1	0
damaged	1	0	0	0
delivery	0	1	0	0
fire	1	0	0	0
gold	1	0	1	1
in	1	1	1	0
of	1	1	1	0
silver	0	2	0	1
shipment	1	0	1	0
truck	0	1	1	1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

 Common words
 For each Email: Count number of words common to Email and Query

 Common words
 For each Email: Count number of words common to Email and Query

2 Length

Count number of words in each Email, and in Query

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Common words
 For each Email: Count number of words common to Email and Query

2 Length Count number of words in each Email, and in Query

Matching score for each Email:

 $Matching \ score = \frac{Number \ of \ common \ words}{(Length \ of \ Email) * (Length \ of \ Query)}$

Emails with highest matching scores:

May give clues about authors of Query

"Count" Common Words in Query and Email 1

Terms	<i>E</i> ₁	Q	Multiply
а	1	0	0
arrived	0	0	0
damaged	1	0	0
delivery	0	0	0
fire	1	0	0
gold	1	1	1
in	1	0	0
of	1	0	0
silver	0	1	0
shipment	1	0	0
truck	0	1	0
Sum			1

common words in Email 1 and Query: $E_1 * Q = 1$

"Count" Common Words in Query and Email 2

Terms	<i>E</i> ₂	Q	Multiply
а	1	0	0
arrived	1	0	0
damaged	0	0	0
delivery	1	0	0
fire	0	0	0
gold	0	1	0
in	1	0	0
of	1	0	0
silver	2	1	2
shipment	0	0	0
truck	1	1	1
Sum			3

common words in Email 2 and Query: $E_2 * Q = 3$

(ロ)、

"Count" Common Words in Query and Email 3

Terms	<i>E</i> ₃	Q	Multiply
а	1	0	0
arrived	1	0	0
damaged	0	0	0
delivery	0	0	0
fire	0	0	0
gold	1	1	1
in	1	0	0
of	1	0	0
silver	0	1	0
shipment	1	0	0
truck	1	1	1
Sum			2

common words in Email 3 and Query: $E_3 * Q = 2$

(ロ)、

Number of words common to Emails and Query

 $E_1 * Q = 1$ $E_2 * Q = 3$ $E_3 * Q = 2$

Count number of words in each email, and in query

Length of Query

Terms	Q	Square
а	0	0
arrived	0	0
damaged	0	0
delivery	0	0
fire	0	0
gold	1	1
in	0	0
of	0	0
silver	1	1
shipment	0	0
truck	1	1
\sqrt{Sum}		$\sqrt{3}$

Length of Query: $\|Q\| = \sqrt{3} \approx 1.7$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Length of Email 2

Terms	<i>E</i> ₂	Square
а	1	1
arrived	1	1
damaged	0	0
delivery	1	1
fire	0	0
gold	0	0
in	1	1
of	1	1
silver	2	4
shipment	0	0
truck	1	1
\sqrt{Sum}		$\sqrt{10}$

Length of Email 2: $||E_2|| = \sqrt{10} \approx 3.2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Number of words common to Emails and Query

 $E_1 * Q = 1$ $E_2 * Q = 3$ $E_3 * Q = 2$

2 Length of Emails and Query

$$\begin{aligned} \|Q\| &= \sqrt{3} \approx 1.7\\ \|E_1\| &= \sqrt{7} \approx 2.6\\ \|E_2\| &= \sqrt{10} \approx 3.2\\ \|E_3\| &= \sqrt{7} \approx 2.6 \end{aligned}$$

Matching Score for each Email

 $Matching \ score = \frac{Number \ of \ common \ words}{(Length \ of \ email) * (Length \ of \ query)}$

Email 1 $\frac{E_{1} * Q}{\|E_{1}\| \|Q\|} = \frac{1}{\sqrt{7}\sqrt{3}} \approx .22$ Email 2 $\frac{E_{2} * Q}{\|E_{2}\| \|Q\|} = \frac{3}{\sqrt{10}\sqrt{3}} \approx .55$ Email 3 $\frac{E_{3} * Q}{\|E_{3}\| \|Q\|} = \frac{2}{\sqrt{7}\sqrt{3}} \approx .44$

Email 2 is the best match for the query

Conclusion for "Tiny Data" Example

Database: Emails from known authors

Email 1: shipment of gold damaged in a fire Email 2: delivery of silver arrived in a silver truck Email 3: shipment of gold arrived in a truck

Query: Email from unknown author gold silver truck

Best matching email:

Email 2: delivery of silver arrived in a silver truck

The Reason for the Weird Way of Counting

Vector Space Model

Emails, Query = vectors Matching score = cosine of **angle** between Email and Query

$$\frac{E * Q}{\|E\| \|Q\|} = \cos \angle (E, Q)$$

What this means "in practice"

Average number of emails per day: 294 billion Number words in English language: at least 250,000

Matching one query with a **single** email: 250,000 operations (one for every possible word) Matching one query with **all** emails: 250,000 * 294 billion = $73.5 \cdot 10^{15}$ operations

What this means "in practice"

Average number of emails per day: 294 billion Number words in English language: at least 250,000

Matching one query with a **single** email: 250,000 operations (one for every possible word) Matching one query with **all** emails: 250,000 * 294 billion = $73.5 \cdot 10^{15}$ operations

Fast PC (Intel Core i7 980 XE)
 109 Gflops = 109 * 10⁹ floating point operations per second
 Matching one query with all emails: about 8 days

What this means "in practice"

Average number of emails per day: 294 billion Number words in English language: at least 250,000

Matching one query with a **single** email: 250,000 operations (one for every possible word) Matching one query with **all** emails: 250,000 * 294 billion = $73.5 \cdot 10^{15}$ operations

- Fast PC (Intel Core i7 980 XE)
 109 Gflops = 109 * 10⁹ floating point operations per second
 Matching one query with all emails: about 8 days
- US supercomputer (Cray XT5, Opteron quad core 2.3GHz) Peak 1,381,400 Gflops Matching one query with all emails: about 1 minute

Can the Matching be Performed Faster?

Can the Matching be Performed Faster?

Yes!

Ralph Abbey, Sarah Warkentin, Sylvester Eriksson-Bique, Mary Solbrig, Michael Stefanelli

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Rolling the Dice

ヘロト ヘ週ト ヘヨト ヘヨト

Rolling the Dice

on which words to use for the matching

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Randomized Query Matching Algorithm

Idea

Do not use every word in query and emails Monte Carlo Sampling: Use only selected words {Downsize to smaller database with fewer words}

Randomized Query Matching Algorithm

Idea

Do not use every word in query and emails Monte Carlo Sampling: Use only selected words {Downsize to smaller database with fewer words}

Justification

- Don't need exact matching scores Identify only emails with highest matching scores
- Database available for offline computation Derive "statistics" based on word frequencies
- Perform query matching online
 Use "statistics" to select words used for matching

Suggestions for Downsizing the Database

Statistics

n: number of words in database Q_j: frequency of word j in query W_j: frequency of word j in database

• Suggestion for selecting word *j* Probability of sampling word *j*

$$p_j = \frac{W_j Q_j}{W_1 Q_1 + \dots + W_n Q_n}$$

Frequently occurring words more likely to be sampled

Rolling the Dice = Downsizing the Database

User input

s: number of samples {number of words in downsized database}

Monte Carlo Sampling {Roll the dice s times}

For t = 1, ..., sSample index j_t from $\{1, ..., n\}$ with probability p_{j_t} independently and with replacement

Downsized database contains only *s* words: word j_1 , word j_2 , ..., word j_s

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Downsized database: word j_1 , word j_2 , ..., word j_s Word frequency in Query: $\hat{Q} = \begin{pmatrix} Q_{j_1} & Q_{j_2} & \dots & Q_{j_s} \end{pmatrix}$

For each Email *E*:

Downsized database: word j_1 , word j_2 , ..., word j_s Word frequency in Query: $\hat{Q} = \begin{pmatrix} Q_{j_1} & Q_{j_2} & \dots & Q_{j_s} \end{pmatrix}$

For each Email *E*:

• Word frequency $\hat{E} = \begin{pmatrix} F_{j_1} & F_{j_2} & \dots & F_{j_s} \end{pmatrix}$

Downsized database: word j_1 , word j_2 , ..., word j_s Word frequency in Query: $\hat{Q} = \begin{pmatrix} Q_{j_1} & Q_{j_2} & \dots & Q_{j_s} \end{pmatrix}$

For each Email E:

- Word frequency $\hat{E} = \begin{pmatrix} F_{j_1} & F_{j_2} & \dots & F_{j_s} \end{pmatrix}$
- Approximate number of words common to Email and Query

$$C = \frac{1}{s} \left(\frac{F_{j_1} Q_{j_1}}{p_{j_1}} + \frac{F_{j_2} Q_{j_2}}{p_{j_2}} + \dots + \frac{F_{j_s} Q_{j_s}}{p_{j_s}} \right)$$

 $\{s, p_{j_1}, p_{j_2}, \ldots, p_{j_s} \text{ compensate for fewer words}\}$

Downsized database: word j_1 , word j_2 , ..., word j_s Word frequency in Query: $\hat{Q} = \begin{pmatrix} Q_{j_1} & Q_{j_2} & \dots & Q_{j_s} \end{pmatrix}$

For each Email E:

- Word frequency $\hat{E} = \begin{pmatrix} F_{j_1} & F_{j_2} & \dots & F_{j_s} \end{pmatrix}$
- Approximate number of words common to Email and Query

$$C = \frac{1}{s} \left(\frac{F_{j_1} Q_{j_1}}{p_{j_1}} + \frac{F_{j_2} Q_{j_2}}{p_{j_2}} + \dots + \frac{F_{j_s} Q_{j_s}}{p_{j_s}} \right)$$

(日) (同) (三) (三) (三) (○) (○)

 $\{s, p_{j_1}, p_{j_2}, \ldots, p_{j_s} \text{ compensate for fewer words}\}$

• Approximate matching score of Email: $\frac{C}{\|\hat{E}\| \|\hat{Q}\|}$

Reuters-215787 Collection: Transcribed Subset

201 documents and 5601 words Number of sampled words $s = 56 \approx 1$ percent

Bucket of computed 25 best matches contains Correct 10 best matches in 99% of all cases

Wikipedia Dataset

200 documents and 198,853 words

Average percent of correct 10 best matches as function of sample size

Sampling 1% of the words gives correct 9 best matches. More sampling does not help a lot.

Summary

Big data

Matching queries against document database

Rolling the dice

Randomized downsizing of database vocabulary Frequently occurring words more likely to be kept

But ...

Summary

Big data

Matching queries against document database

Rolling the dice

Randomized downsizing of database vocabulary Frequently occurring words more likely to be kept

But ...

Why not use a predictable (deterministic) algorithm? Why use a randomized algorithm?

Summary

Big data

Matching queries against document database

Rolling the dice

Randomized downsizing of database vocabulary Frequently occurring words more likely to be kept

But ...

Why not use a predictable (deterministic) algorithm? Why use a randomized algorithm?

Advantages of randomized algorithm

- Easy to analyze
- Fast, and simple to implement
- As good in practice as deterministic algorithm (for this type of application)

The Bigger Picture

Many different methods for fast query matching

Algorithm in this talk:

Randomized matrix vector multiplication

Other randomized matrix algorithms:

Matrix multiplication Subset selection Least squares problems (regression) Low rank approximation (PCA)

Applications for randomized algorithms: Social network analysis, population genetics, circuit testing, ...

National Science Foundation, 29 March 2012

Press Release 12-060 NSF Leads Federal Efforts In Big Data

At White House event, NSF Director announces new Big Data solicitation, \$10 million Expeditions in Computing award, and awards in cyberinfrastructure, geosciences, training

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hurricane Ike visualization created by Texas Advanced Computing Center (TACC) supercomputer Ranger. Credit and Larger Version